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1.  INTRODUCTION  
 
Simulation is a useful tool that one can apply in diverse areas, including the design and control of manufacturing facilities, 

the evaluation of hardware or software requirements for computer networks, the analysis of financial or economic systems, 

and the design and analysis of transportation systems.  Since it is often less costly and time consuming to experiment with a 

simulated system than to do so with a real-world system, one can use simulation prospectively to design or analyze the 

performance of systems that do not currently exist.   

 Consider the many phases of a full-scale simulation project, as illustrated in Figure 1.  As one abstracts the 

real-world or prospective system and then implements it as a functional simulation program, one must conduct several 

distinct types of activities.  The programming and debugging tasks in the verification stage can be time-consuming and 

difficult, particularly for highly complex models.  Validation ensures that the simulation output adequately approximates the 

performance behavior of the true system.  Validation efforts that establish the credibility of the conceptual model as a 

representation of the real-world or prospective system are necessary if the results of the simulation are to gain respect and 

play a role in managerial decision-making.   

*** Figure 1 about here *** 

Because of these difficulties, many perceive simulation inappropriately as an exercise in computer programming 

rather than as model building and analysis.  As a result, the exploration/experimentation phase may receive short shrift.  A 

large number of factors and the presence of nonlinear effects as well as multi-factor interactions may affect overall 

performance, compounding this oversight.  Despite advances in computing speed, large amounts of computer time may be 

required to develop an adequate representation of the system’s behavior. 

 In this paper, we demonstrate how the methodology called frequency domain experimentation (FDE) developed by 

Schruben and Cogliano (1987) can provide insights into the behavior of complex production systems.  An appropriately 

designed FDE allows analysts to simultaneously examine a large number of potential factors, quadratics, and interaction 

effects to determine their impact on the system’s response.  By providing a concise description of the procedure, along with 

access to computer programs for designing and analyzing FDEs, we hope to remove technical hurdles that might otherwise 

have prevented researchers and analysts from implementing FDEs.  FDEs require fewer runs than competing techniques, 

and use less data when the simulation’s output stream is highly correlated.    

 We begin with a discussion of methods for exploration and experimentation, and motivate the need for efficient 

experimental designs in Section 2.  We describe the FDE methodology in Section 3, and illustrate its use for two different 
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types of systems in Section 4.  The first is a simple stochastic system in which the true behavior is known and hence the FDE 

results can be compared to the underlying model; the second is a just-in-time (JIT) system using kanban.  In Section 5, we 

discuss the results and compare the FDE method with other approaches for estimating main effects, two-way interactions, 

and quadratic terms. We recommend the use of FDEs when the analyst seeks to identify important terms in a second-order 

model, rather than solely screening for important main effects. Section 6 contains our concluding remarks. 

2.  EXPLORATION/EXPERIMENTATION METHODS   

 A well-designed experiment allows analysts to examine several prospective system configurations simultaneously. 

 An experimental design can be viewed as a matrix with a column for each of the factors.  A row in the matrix (called a 

design point) specifies one specific combination of factor level settings.  Many operations management (OM) studies in the 

literature use full factorial experimental designs because of their simplicity, and because they allow the analyst to identify 

interactions among the factors as well as main effects.  For example, Enns (1995) uses a 2×3×2 design to assess the impact 

of average utilization, load rules, and scheduling approaches on a flow shop with finite scheduling and internally set due 

dates.  Malhotra and Ritzman (1994) consider a 24 factorial design for assessing the impact of demand variability, capacity 

utilization, and mix and route flexibilities on postal service stations.  Kim and Bobrowski (1995) examine job shop 

performance using a 4×4×2 full factorial for job-release mechanisms, scheduling rules, and due-date tightness levels.  

Vakharia et al. (1996) use a factorial design to examine six experimental factors in an investigation of the operational impact 

of parts commonality.   

 Results from a factorial experiment are often analyzed using ANOVA.  Alternatively, if quantitative factors (e.g., 

utilization rates, lead times, capacities) determine some or all of the configurations, then the analyst can construct 

response-surface metamodels of the system performance using regression techniques.  These metamodels can provide 

insight into the system behavior as a whole, or suggest ‘good’ sets of input factors for improved system performance.  For 

example, Kleijnen (1993) uses response-surface methods to study a decision support system in a Dutch steel tube factory.  

While this approach is less often used in OM research than ANOVA, perhaps in part due to the qualitative nature of many 

input factors of interest (such as FIFO or LIFO priority rules, scheduling rules, etc.) it is a well-known approach in the 

applied statistics and simulation communities.   

 The techniques just described all have a run-oriented approach, as shown in Figure 2.  Input factor levels (such as 

scheduling rules, machine characteristics, etc.) are constant during the course of a run.  The simulation code is a ‘black box’ 

that transforms these inputs (and often pseudo-random error) into simulation output that mimics the output of the real or 
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prospective system.  For each design point, the analyst makes one or more simulation runs and computes the average output 

measures.   

*** Figure 2 about here *** 

 Run-oriented approaches work well when we vary only a few factors, or when only main effect models are of 

interest.  For example, a full factorial experiment involving four factors requires only sixteen runs. Saturated or 

nearly-saturated fractional factorials require fewer runs if not all interaction effects need be estimable to construct the 

metamodels.  A 2k-p fractional factorial explores k factors (each at two levels) in only 2k-p runs. Resolution III fractional 

factorials require the fewest runs; they are referred to as screening designs, and used to identify important factors when only 

main effects are of interest.  Factorial and fractional factorial designs are discussed in any basic experimental design 

resource, such as Box et al. (1978), Montgomery (2000), or NIST/SEMATECH (2005). 

 Unfortunately, most problems of interest to OM researchers are not so simplistic.  There may be many factors 

worth investigating, important interactions between factors might exist, or there might be nonlinear relationships between the 

factors and the response. This means that full factorials, screening designs, and two-level designs are not appropriate choices 

for the experiment.  For example, the apparently simple JIT system we analyze later in this paper has 34 factors varied 

during the experiment.  A full factorial experiment involving all these factors would require over 17.2 billion factor 

combinations—too  many to incorporate in a manually controlled run-oriented approach even with the current advances in 

computing technology.  Organizing the runs and collating the data would itself be a massive undertaking. If the ability to 

estimate all two-way interactions is desired, then so-called resolution V fractional factorials or higher-resolution designs are 

needed.  3-level (fractional) factorials, such as the 39-5 used by Cabrera-Rios et al. (2002) to design a manufacturing cell for 

profit maximization, allow quadratic effects to be investigated as well.  Central composite designs (CCDs) do this more 

efficiently by adding design points to (fractional) factorials.  However, the statistical literature (e.g., Box et al. 1978, 

NIST/SEMATECH 2005) reports these only for designs involving only 11 or fewer factors, and suggest that screening 

designs  (concerned only with main effects) be used when the number of factors is larger.  

 Is there a need for designs that can be used to explore interaction and quadratic effects even when the number of 

factors is very large?  We believe the answer is an emphatic ‘Yes!’ For example, Jensen et al. (1996), in their study of 

process flexibility in a group technology environment, state that ‘myriads of untested alternatives exist’ and mention order 

review and release systems, lot-sizing methods, partitioned environments, transfer batches, and new machines as some of the 

many factors requiring further investigation.  Krajewski et al. (1987) examine 36 factors in an investigation of the adverse 
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impact of environmental uncertainty on the performance of kanban systems, but in order to make the study manageable 

using factorial analysis they combine their factors into seven clusters.  While they investigate only main effects, they suggest 

the need for more comprehensive experimentation in order to identify interaction effects among the subsets of the clusters.  

After using a factorial design to study the impact of scheduling rules and two environmental factors on outpatient clinics, 

Klassen and Rohleder (1996) suggest that many factors and interactions (e.g., waiting time breakdowns and client 

stratification, multi-server systems, circumstances that make load-sharing or expediting desirable, and type of clinic) merit 

further investigation.   

3.  FREQUENCY DOMAIN EXPERIMENTATION 

An alternative to the run-oriented approach is the frequency domain approach, illustrated in Figure 3.  If we view the inputs 

and outputs of the simulation runs as time series rather than constant (or average) values, we can then oscillate the input 

factors within the course of a simulation run.  The idea is a straightforward one taken from classical systems theory; namely 

that if the input factor affects the system performance, then the output time series will oscillate at a related frequency.  

Alternatively, if the input factor does not affect performance, then the ‘black box’ will not transmit the oscillation through to 

the output time series.  

*** Figure 3 about here *** 

In practice, it is not so easy to determine oscillation relationships by eye, particularly when the simulation time 

series involves randomness or the number of factors is large.  Additionally, the system could either dampen or magnify the 

magnitude of the oscillation (a phenomenon called system gain), and time lags could occur between the input factor variation 

and its appearance in the output time series (a phenomenon called phase shift).  Consequently, we take the Fourier spectrum 

of the output time series.  This partitions the overall variability in the output series according to its sinusoidal components.  

The spectrum of pure, uncorrelated error is flat, but complex systems often have natural cyclic behavior.  Customer demand, 

for example, may follow daily, weekly, or annual patterns.  Die wear and replacement forms another type of cyclic pattern.  

The nature of such cyclic behavior, whether deterministic or stochastic, will influence the shape of the spectrum.  For 

example, the spectrum of positively autocorrelated error has large magnitudes for low frequencies, while that of negatively 

autocorrelated error has large magnitudes for high frequencies. 

 A frequency domain experiment involves two different types of runs.  In the first type, called a noise run, we fix the 

levels of the input factors at given nominal values during the course of the simulation run, and then observe the output 

stream.  Random fluctuations and any natural cyclical tendencies of the system determine the variation in the output stream 
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for this run.  In the second type, called a signal run, we dynamically change the input factors’ settings between specified high 

and low values during the course of the simulation run.  If none of the factors have an appreciable effect on the system, then 

the spectrum of the signal run output has the same shape as that of the noise run output.  However, if the system response is 

sensitive to the value of an oscillated factor, then the signal spectrum will exhibit a much higher value (or spike) at the 

corresponding frequency. 

 More formally, during the signal run the factor levels are sinusoidally oscillated at distinct frequencies (
i

! , i = 

1,2,…,k) referred to as driving frequencies.  Each input term xi has an associated set of term indicator frequencies in the 

output.  For example, if frequencies 
1
0.1! = and 

2
0.25! =  (expressed in cycles per observation) are assigned to the two 

input factors x1 and x2, respectively, then the set of frequencies {0.1}, {0.1 ± 0.25}, and {0.1 × 2} are the term indicator 

frequencies for x1, the x1x2 interaction, and 2

1
x , respectively.  Trigonometric relations determine the set of term indicator 

frequencies, which all fall between 0 and 0.5 cycles per observation.  Careless choice of factor driving frequencies can 

partially confound term indicator frequencies, but a simple search algorithm will generate unconfounded designs.  Jacobson 

et al. (1991) provide a table of designs for second-order polynomials with up to 21 factors, as well as for third-order 

polynomials with up to eleven factors, and mark the designs that are known to maximize the minimum spacing between 

indicator frequencies (also known as the bandwidth).  The ‘design’ program described in the Appendix is an implementation 

of their driving frequency selection algorithm that allows one to determine unconfounded designs for second-order models 

with an arbitrary number of factors.   

 The values of continuous input factors in the signal run are sinusoidally oscillated: 

xi(t) = 0.5(Ui + Li) + 0.5(Ui - Li)cos(2πωi(t)),     (1) 

where xi(t) is the value of the continuous factor xi at the simulated time index t, Ui and Li are the upper and lower bounds of 

the factor range, and ωi is the driving frequency in cycles per observation.  The quantities 0.5(Ui + Li) and 0.5(Ui - Li) are the 

nominal value and the amplitude of the factor xi, respectively.   

 For a binary input factor xi that assumes discrete values a1 or a2, one cannot sinusoidally oscillate the factor level 

itself.  Instead, we can oscillate the probability as follows:   

Pr(xi(t) = a1 ) = 0.5 + 0.5cos(2πωi(t))      (2) 

where ( )
i
t! is the driving frequency for xi evaluated at time t (Sanchez and Sanchez, 1991).   
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 To facilitate comparison of cyclic behavior, we change from the time domain to the frequency domain by 

computing Fourier spectra for the signal and noise runs.  Let 2

N
f

 denote the spectrum estimator for the noise (or control) run, 

and let 2

S
f denote the spectrum estimator for the signal run.  The spectral signal-to-noise (S/N) ratio 2 2

/
S N
f f  (or its 

logarithm) is the basis of the analysis.   

 The graph of the S/N ratio versus ω  will show a spike for each important term at its term indicator frequencies.  

Formal analysis of the spectra is also possible.  Since the distribution of the sample spectrum is asymptotically proportional 

to a chi-squared distribution, the distribution of the sample S/N ratio is approximately an F distribution with degrees of 

freedom dependent on the method used to calculate the spectra.  Table 1 summarizes the FDE procedure.   

*** Table 1 about here *** 

Table 1 refers to the programs provided in the Appendix in many steps.  These programs use reasonable defaults in 

estimating the spectra.  Note that calculating spectral terms at exactly d non-zero frequencies (if d is odd) or d/2 non-zero 

frequencies (if d is even) means that each indicator frequency will be associated with a unique S/N ratio.  Users who wish to 

fine-tune their analyses can do so by adjusting parameters such as run length, window type (e.g., Tukey, Parzen, or 

truncated) and window size M.  View the source code and a time-series text such as Chatfield (2004) for more information.   

 

4.  EXAMPLES  

We illustrate the FDE methodology for two experiments.  First, in Section 4.1, we examine a mathematical simulation where 

the ‘true’ metamodel is known but obscured by random noise.  Our purpose is to show that the FDE methodology correctly 

identifies the system factors.  In Section 4.2 we examine the use of FDE for screening purposes for a system that is more 

representative of those for which OM researchers might employ the technique.  We simulate a JIT system with kanban in 

which 34 factors are of interest to the analyst, and quadratic effects, interstage- and intrastage-interactions potentially impact 

system performance.  Note that these examples are primarily to illustrate the methodology, rather than to gain insights into 

the specific systems. 

4.1.  KNOWN STOCHASTIC SYSTEM  

Suppose three factors are of interest: x1, x2, and x3.  We generate a time series from the following underlying relationship:    

Y(t) = 3x1(t) – x3(t)  + 2x1(t) x3(t)  -  x2
2
(t) + εt     (3) 

where the εt  are standard normal random variables from a first-order autoregressive process with autocorrelation ρ = 0.5.  
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Step 1.  Our performance measure is the simulation output, Y.   

Step 2.  Three factors (xi, i = 1,2,3) will be oscillated during the signal runs to assess their impact on Y.  

Step 3.  All factors will be oscillated between -1 and +1.   

Step 4.   The three driving frequencies are {1/27}, {4/27}, and {10/27}.  These are also the indicator frequencies for the main 

effects.  Indicator frequencies corresponding to the three two-way interactions are {3/27, 5/27}, {9/27, 11/27}, and {6/27, 

13/27}.  Indicator frequencies for the quadratic effects are {2/27}, {8/27}, and {7/27}. 

Steps 5 and 6.  Table 2 shows output from the ‘design’ program.  The first part of this table shows the assigned driving 

frequencies for each of the three signal runs.  The second part shows information useful for analysis, i.e., the frequencies at 

which main, interaction, and quadratic effects would appear.  The notation for the terms is i:0 for the main effect of ,
i
x i:j for 

an 
i j
x x  interaction, and i:i for the quadratic 2

.
i
x  Since the design is unconfounded, each indicator frequency is 

associated with at most one term in a run. 

***  Table 2 about here *** 

 Step 7.  The default run length is ( 1)N d!" + where 10.! "   This allows one complete cycle to be truncated to remove 

any initialization bias, and keeps ν complete cycles for analysis purposes.   

Step 8.  Sample results from 100 observations of the signal and noise runs appear in Figure 4(a-b).  The noise run shows the 

natural variability in output as a function of time.  The strong oscillatory behavior in the signal run clearly indicates that 

variation in the factors is transmitted to the response. 

*** Figure 4 about here *** 

Step 9.  We discard the first full cycle of data from all runs, leaving 270 observations in each run.   

Step 10.  We use the ‘fspect’ program in the Appendix (with the default “Tukey” window, 27 non-zero frequencies, and the 

recommended window size M=(8/3)27=72) to compute the Fourier spectra of the signal and noise runs.   Spectra for the first 

pair of runs are provided in Figure 5.  
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*** Figure 5 about here *** 

Step 11. The ‘ratio’ program in the Appendix Figure 5 calculates the signal-to-noise (S/N) spectral ratios for each frequency 

assignment.   

Step 12.  The ‘analyze’ program pools the results by term across the three frequency assignments and provides a single table 

(Table 3) with the pooled signal-to-noise ratios.  Pooling terms at non-indicator frequencies also provides a lack-of-fit 

indicator that can be used to determine whether or not a second-order model is sufficient.   

*** Table 3 about here *** 

Step 13. The pooled S/N results (Table 3) clearly indicate spikes (important effects) at frequencies that correspond to the 

terms  x1,  x3, the  x1x3 interaction, and the quadratic term x2
2
 .  The values for the lack-of-fit indicator and the other 

potential model terms (quadratics for x1 and x3, as well as interactions involving x2) are all near one, indicating that this 

second-order model is sufficient and higher-order effects are not present.  FDE has correctly identified the important terms in 

equation (3).   

4.2.   A KANBAN EXAMPLE   

We now analyze part of a manufacturing plant with three serial stages, and assume a single-card constant-cycle kanban 

system is used with a one-to-one container relationship.  For simplicity and clarity of presentation, the system produces only 

one item.  Figure 6 shows the schematic of the model.  While the system’s behavior is easy to analyze in the deterministic 

case, our simulation introduces randomness into the lead time for input materials, machine operating and repair times, 

machine operating durations, setup times, and demand.  We now illustrate the noise factor screening process for the kanban 

system of Figure 6.  Our purpose is to demonstrate, using a problem of interest in operations management, that it is possible 

to examine many factors, interactions and quadratic effects simultaneously.  As with virtually all DOE scenarios, our results 

are specific to this particular configuration and should not be generalized to kanban systems as a whole. 

*** Figure 6 about here *** 

Step 1.  Our performance measure is the service level, measured in terms of average daily number of backorders.  An ideal 

JIT system satisfies all demand on time. 
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Step 2.  We investigate 34 different environmental noise factors in six categories: demand volume, processing time, setup 

time, time between breakdowns, repair time, and supplier lead time.  Of the six categories, demand volume and supplier lead 

time represent external noise factors, and may be the most difficult to control.  The remaining four categories contain 

internal noise factors.  The demand category consists of two factors: the mean and variance of the demand volume imposed 

at stage 1.  We assume demand follows a truncated normal distribution.  Similarly, the mean and variance are the two factors 

in the supplier lead time category, which directly impacts stage 3.  The setup time category consists of a single noise factor 

(mean setup time) for each production stage.  The range associated with the mean setup time reflects the expected future 

reduction in setup time due to enhancement programs that will be undertaken by the company.  The processing time, time 

between breakdowns, and repair time categories each consist of three variables per stage: the distribution (truncated normal 

or exponential), the mean, and the variance corresponding to the truncated normal distribution. 

  
Step 3.  The factor levels appear in Table 4.  We choose factor levels that are generally compatible with the values used in 

Krajewski et al. (1987) in that they fall between the so-called U.S. Low (a favorable environment for kanban 

implementation) and Kanban High (an unfavorable environment).  We have added a few variables in order to include the 

distributional shape and variance in many of the categories.  The value in Column 3 corresponds to the level for which the 

noise experiments were conducted, while Columns 4 shows the lower and upper factor levels for the signal runs. 

 *** Table 4 about here *** 

We perform our analysis for a kanban system with fixed decision variables.  The analog for a practitioner would be 

a factor-screening experiment to identify how noise factors impact the performance of a specific kanban system—such as the 

one currently in use.  We set the container size to 10 units and the kanban review period to 480 minutes, so a detached 

kanban becomes a production order at the beginning of the next day.  We then set the number of kanbans to 15 using the 

procedure of Moeeni and Chang (1990). 

Step 4.  The ‘design’ program generates the set of 34 driving frequencies.  These have the form / 7656i if! = ( i=1,…,34). 

Step 5 and 6.  The last three columns of Table 2 provide the three driving frequency assignments, denoted by A1, A2, and 

A3.  The discrete factors are assigned to the nine lowest frequencies.  

Step 7.  We use the minimum default run length of N=84,216 days. 
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Steps 8 and 9.  We conducted the experiments on a Mac PowerBook G4.  Our simulation automatically truncated the first 

cycle (7,656 days) within each run.   

Step 10.  The ‘fspect’ program in the Appendix is used to compute Fourier spectra.  The default Tukey window is used, and 

spectral terms for 3,828 non-zero frequencies are printed.  

Step 11.  The ‘ratio’ program computes the signal-to-noise spectral ratios for the three different frequency assignments.  

These are illustrated in Figure 7(a-c).  Since indicator frequencies differ across the three driving frequency assignments, we 

identify the major spikes on each subgraph according to the factor term.  

*** Figure 7 about here *** 

Step 12. The ‘analyze’ program pools the S/N ratios for term indicator frequencies across like terms, resulting in a total of 

629 S/N ratios.  These correspond to 34 main effects, 34 quadratic effects, and 561 two-factor interactions.   

Step 13.  In Table 3, we list all term identifiers that result in an average S/N ratio (across the three driving frequency 

assignments) of at least 10.00.  While somewhat arbitrary, this cutoff is well above both the background levels and the 

average for the remaining indicator frequencies.  Table 5 lists quadratic, intra-stage, and inter-stage interactions in addition 

to main effects.  

*** Table 5 about here *** 

 
5.  COMPARING COMPUTATIONAL REQUIREMENTS  

FDEs (like other experimental designs) are more efficient than trial-and-error approaches to identify the extent of factors’ 

impacts on simulation performance.  The orthogonality of FDEs also eliminates problems of multicollinearity among input 

factors, which can make it more difficult to identify statistically significant terms.  A natural question to ask is how this 

method compares (in terms of implementation effort) to other orthogonal experimental designs.   

 We find the oversight required for FDE is much less than that for run-oriented designs involving even a moderate 

number of factors.  While one must write (or modify) the simulation code to accept time-varying inputs, implementing a 

FDE (using the programs in the Appendix) and gathering the results is then an almost fully-automated process.  As such, it is 

less prone to data entry and data collation errors than is an experiment requiring, say, 210=1,024 runs at distinct 

configurations, unless programs or scripts are developed to automate the data generation and collection process.   
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 The amount of data required is another characteristic that has been used to compare alternative experimental 

designs.  In what follows we say one design is more efficient than another if it can estimate the same effects with less data.  

Clearly, resolution III fractional factorials and other so-called screening designs require very few runs.  However, we do not 

consider these to be direct competitors for FDEs since they do not allow the analyst to test for the existence of quadratic 

effects or two-way interactions.  We recommend the use of FDEs for screening purposes when the analyst seeks to identify 

important terms in a second-order model, rather than solely important main effects. 

This means that the data requirements of FDEs should be compared to those of other orthogonal designs that 

permit tests of all main effects, quadratic effects, and two-way interactions.  Full factorials are candidates, but these are 

notoriously inefficient when higher-order interactions are assumed negligible.  For example, a 234 factorial experiment 

would require 17.2 billion computer runs to estimate only 629 terms—even if each run took only one CPU second it would 

take over 544 years of CPU time to finish the experiment!   A resolution V central composite design (CCDV) is considered 

an efficient design for second-order response models.  It is convenient to discuss CCDs in their coded levels, where 

each factor ranges from a low of -1 to a high of +1.  CCDV designs involving k factors are composed of 

• A 2k factorial or 2k-p fractional factorial design of resolution V or higher;  

• k additional pairs of star points:  factor i takes the value +a or -a in the ith pair of design points (a=1 is 

possible), while all other factors are set to zero (the middle level); 

• One or more center points at the design point {0,0,…,0}.  We use 2 center points. 

Fractional factorials and CCDs appear in texts such as Box et al. (1978) or Montgomery (2000). Kleijnen et al. (2005) 

discuss the use of these and other designs for simulation experiments. The National Institute of Science and 

Technology has a nice description on their website (NIST/SEMATECH 2005), and some statistical software packages 

also include experimental design options.  Still, resolution V designs are only presented for a relatively small number 

of factors: NIST/SEMATCH (2005) show k=8, while Box et al. tabulate a 11 3
2
V

!  fractional factorial that could be used 

as the basis of a CCDV involving 11 factors. With the lack of published designs allowing full estimation of second-

order models of the response for a larger number of factors, assessing the relative computational requirements of FDE 

seems problematic. 

However, a discrete orthogonal basis set called Walsh sequencies can be used to generate two-level designs.   

Sanchez et al. (2001) show that by oscillating factors at carefully chosen Walsh sequencies, the resulting design points 

are simply those corresponding to a full factorial design (reordered).  So, rather than specifying a factorial design in 
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terms of a 2k k! design matrix, it can be specified by an assignment of the k factors to k Walsh sequencies.  Sanchez 

and Sanchez (2005) use this idea, together with a simple iterative algorithm, to generate highly efficient resolution V 

fractional factorials.  We now use these to construct extremely efficient CCDs as a basis for assessing the efficiency of 

FDEs involving up to 120 factors.   

The first few columns of Table 6 list the denominator for the FDE frequency assignments (d) and the number 

of design points in a single replication of the efficient CCD (c).  The remaining columns require some explanation.  A 

single simulation run (e.g., for a queueing system simulation) may yield an output stream where the data are correlated 

so standard statistical techniques cannot be used directly.  A common way of dealing with this phenomenon is the 

method of batch means (Law and Kelton, 2000).  The output stream is split into batches large enough so that 

observations more than one batch apart are effectively independent.  After discarding the initial batch to remove any 

warm-up period, the batch means are treated as i.i.d. observations for analysis purposes.   This means that a long run 

may be required to gain a single number (batch mean) using a run-oriented approach.  This must be taken into account 

when computing data requirements for run-oriented designs. 

*** Table 6 about here *** 

We consider several systems with different output correlation behavior in Table 6, such as first-order 

autoregressive models with differing levels of lag 1 autocorrelation.  These are denoted by AR(ρ).  Autocorrelations of 

ρ = 0.5 to to ρ = 0.995 correspond to (theoretical) batch sizes of 5 to 598, where the batch size is the value t when the 

theoretical lag t autocorrelation first drops below 0.05.  Two other designs indicate batch sizes corresponding to the 

noise run of our kanban system (t = 3000) and a pseudo-system corresponding to a queue with heavy traffic intensity (t 

= 5000).  The minimum data required for a single replication of a CCD is then 2
CCD
N ct=  (if we assume the analyst 

runs only two complete batches for each design point and discards the first).  The total data requirement for one of our 

FDE experiments is 66 ,
FDE
N d=  corresponding to three sets of signal and noise runs, each involving 11 complete 

cycles (again, discarding the first).  The efficiencies reported in the table are / .
FDE CCD
N N   Note that while CCDs are 

more efficient for independent samples or low correlations, FDEs require substantially less data when the systems are 

highly correlated.  For example, for the kanban model the FDE needed only 4% of the data that would have been 

required for a single replication of a CCD involving 34 factors.  Viewed another way, this 34-factor FDE requires about 

the same amount of data as an 8-factor CCD.   
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To compute the relative efficiency of our FDEs to CCDs where b usable batches are obtained from each run, 

divide the entries in Table 6 by (b+1)/2.    A rule of thumb in simulation output analysis is to use between 8 and 20 batches, 

and analysts often use a common batch size estimated from a run they expect to have the high autocorrelation, such as the 

heaviest traffic conditions for a queueing simulation.  If this advice is followed, FDEs may require less total data than CCDs 

even when the system output exhibits only moderate correlation. 

Since analysts have not had ready access to large resolution V designs, how have they been conducting 

experiments involving many factors?  Often, screening experiments (which test only for main effects) are used to save time 

and data collection effort in the initial stages of exploration/experimentation.  Based on the screening results, one can 

conduct more detailed experiments using a small subset of the original factors and interaction terms.  For example, an 

analyst might use a saturated fractional factorial experiment involving 15 factors to identify factors with important main 

effects.  If four of these are found to be significant, a 34 factorial might then be performed to check for interactions and 

quadratic effects.  In contrast, conducting an FDE that examines quadratic and interaction effects requires no more 

simulation runs than an FDE that examines only main effects.  Spikes at non-indicator frequencies show the lack-of-fit of an 

under-specified model.  If the simulation output exhibits high autocorrelation, FDE may still require fewer total observations 

than a run-oriented design.  Thus, FDE can often provide more insight into the simulation’s behavior for the same 

computational effort, because it does not require one to make dangerous assumptions of less complex model structures.   

When using the programs in the Appendix, FDE has one additional advantage—the results (e.g., Table 2) are ready 

for interpretation.  In contrast, even if an analyst conducting a run-oriented design automates the data generation and 

collection process, they typically port the output into a statistical software package and must spend additional time in order 

to conduct the analysis.  Consider the kanban example of Section 4.2.  Although the signal and noise runs were relatively 

long, the computer experiments required only 50 seconds of CPU time on a Mac PowerBook G4.  The calculation of the 

Fourier spectra took under three minutes, and that for the spectral ratios was negligible.   

6.  SOME DETAILS, CAVEATS, AND REFINEMENTS  

 Our presentation of FDE and our implementation via the programs in the Appendix is intended to provide a reader 

with a general-purpose analysis approach.  Nonetheless, there are some details and caveats worth mentioning.  While we 

have presented FDEs as a useful tool for simulation experiments, the methodology is not a panacea.   

First, some details. In this paper we use a qualitative approach to identify important terms in the model.  This is 

reasonable since the magnitude of a spike is proportional to the square of the magnitude of its effect, but formal tests are also 

possible since the pooled S/N ratios asymptotically follow an Fν,ν distribution (Sanchez and Buss, 1987).  
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In our description of the oscillation patterns, we distinguish between quantitative and binary factors.  Clearly, some 

simulations may involve qualitative factors with 3 or more levels, or discrete factors with a limited number of potential 

choices.  These cases are discussed in Sanchez and Sanchez (1991).  The former can be dealt with by constructing a tree with 

binary factors associated with each split.  This increases the number of factors that will be oscillated during the experiment 

and input for the ‘design’ program to generate frequency assignments.  Binary trees are also options for discrete quantitative 

factors; an alternative is to round the oscillated values to the nearest integers.  

We specify three sets of frequency assignments for an FDE.  However, if the noise spectrum is flat, a single pair of 

signal and noise runs suffices.  An analyst faced with very long run times may wish to begin by examining the spectrum of a 

single noise run to assess whether or not all three assignments are necessary. 

A few caveats are in also in order.  For many queueing networks, such as the kanban system of this paper, certain 

configurations may make the system unstable.  For example, under sufficiently high traffic intensity, backorders can build up 

infinitely.  If this is true, the output stream will ‘drift’ in terms of its mean value.  The corresponding result in the spectrum is 

extreme low frequency behavior (i.e., a large spike at frequency zero).  If this occurs, one should take care in interpreting the 

results.  Morrice and Jacobson (1995) have begun to address the use of FDE for transient models, but their work deals with 

small oscillation amplitudes rather than the large amplitudes used in this example.  We remark that unstable system 

configurations are also a potential problem with run-oriented approaches. 

Fourier spectral computations typically use window estimators to estimate the spectral terms.  At times, the effects 

due to an important factor may be ‘smeared’ across adjacent terms.  This may be observed visually if there are many ‘hills’ 

rather than ‘spikes’ in the S/N ratio plot.  Our experience has been that the defaults work well, but if smearing appears to be 

a problem, one can rerun the ‘fspect’ program on the simulation output, while specifying a larger window size as part of the 

command line input.  Doubling the window size from the default value halves the degrees of freedom associated with the 

pooled S/N ratios (intermediate values can also be used).  If desired—and if time permits—longer runs or additional pairs of 

signal and noise runs can be made to allow larger window sizes to be used without sacrificing degrees of freedom.   

Before calculating the spectra, we can check to determine if truncating a single cycle is sufficient by calculating the 

autocovariance terms of the simulation output.  A rule of thumb (Law and Kelton, 2000) states that observations separated 

by at least 10 times the lag at which the magnitude of the autocorrelation last drops below 0.4 are approximately 

independent.  This is a more stable calculation than seeking the time when the magnitude of the autocorrelation last drops 

below 0.05 when the autocorrelations are themselves estimates.  
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Finally, our comparisons between FDEs and CCDs (in Section 5) dealt with the data required to conduct 

experiments, rather than other measures such as the power of the resulting F-tests for identifying significant terms or the 

precision of the fitted metamodel coefficients.  A broad investigation is beyond the scope of this paper, but Sanchez and 

Konana (2000) empirically investigate FDE’s ability to correctly identify model terms for a suite of AR(1) systems.  

For the interested reader, we briefly describe some refinements and extensions of the basic FDE approach. Morrice 

and Schruben (1993) proposed a variation of FDE called harmonic analysis.  Here the simulation output is regressed onto 

explanatory variables of the form sin(2πωi(t)) and cos(2πωi(t)) for all indicator frequencies ωi.  This allows one to obtain R2 

values and metamodel coefficients, but at the costs of an extremely large analysis matrix without lack-of-fit indications.  

However, this may be a useful second-stage analysis after FDEs have identified an appropriate model.  

Sanchez and Konana (2000) examined the effects of different run lengths for the signal and noise runs.  Their 

results show that it is often possible to obtain the same screening power with fewer total observations by allocating more 

observations to the signal run.  In this context, Sanchez and Konana (2000) also examined the use of spectral differences 

(Sargent and Som, 1992; Robinson et al., 1993) rather than spectral ratios. 

One can use a variation of the frequency domain approach to examine system robustness.  For example, Moeeni et 

al. (1997) use response-surface methodology to model the mean and variability of service and inventory levels for the 

kanban system of Section 4.2 as a function of a common container size, the number of kanbans, and the kanban lead times, 

where the mean and variability are expectations over the ranges of the 34 noise factors of Table 2.  In this instance, using 

nearly-saturated fractional factorial designs for the noise factors would still result in 64 configurations for each combination 

of the decision factors.  Since the estimation of specific noise factor effects is not the goal in this study, the FDE 

methodology is efficient but not restrictive.   Sanchez and Wu (2003) developed and demonstrated a frequency-based 

approach for terminating simulations.  

7.  CONCLUDING REMARKS   

We have shown that frequency domain experimentation makes it possible to simultaneously analyze many factors in a single 

(albeit, large) experiment.  Our goal is to make this approach accessible to researchers and practitioners in operations 

management.  We have synthesized results appearing in several archival research journals to present a step-by-step approach 

for simulation experiments using frequency domain experimentation.  Our hope is that this methodology may enrich the 

theory and practice of operations management by providing researchers and analysts a tool to help identify factors that 

impact their production or service systems.   
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 While the methods for FDE have been published, they are not yet widely known.  Many academic researchers 

using simulation face the prospect of designing experiments to analyze a complex system or problem.  For one-time 

applications, the prospect of writing programs to choose appropriate driving frequencies, calculate sample autocovariances, 

compute Fourier spectra and combine spectral ratio terms appropriately for multiple frequency assignments may have been 

too daunting.  We feel this paper shows the benefits of simultaneous analysis, and by providing access to the programs 

needed for FDE design and analysis we hope to facilitate the technique’s use.  

 FDE is a heuristic method for identifying important model terms.  This may be only a preliminary step in 

addressing a research question, but it is an important one.  Many studies have focused on main effects due to time 

limitations, yet it is clear that complex systems cannot typically be characterized by simple, main-effect models.  We have 

shown that FDEs are very efficient designs for exploring simulations with correlated output.  FDEs can help the analyst 

determine which factors impact a system, and hence require oversight.  Alternatively, they can identify terms for further 

experiments or analysis using conventional methods.   
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APPENDIX   

A suite of tools to support frequency domain experiments, as well as the sample model of Section 4.2, is available in source 

form on request from the authors.  A README.txt file describes the components (‘design’, ‘fspect’, ‘ratio’ and ‘analyze’), 

as well as instructions for running the provided example. 

This distribution is free software; you can redistribute it and/or modify it under the terms of the GNU General 

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later 

version.  These programs are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without 

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 

General Public License (included in the distribution) for more details. 
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Fig. 5.  Spectra for mathematical example 
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(a) Frequency assignment 1 

 
(b) Frequency assignment 2 

 
(c) Frequency assignment 3 

 
Fig. 7.  Signal-to-noise spectral ratios for kanban example 



 

 

29 

Table 1  
FDE Summary 

Step  Description 

1. Specify performance measures. Determine output measures that are important for purposes of the analysis. 

2. Specify factors. Determine the factors to be investigated.   

3. Choose factor ranges. Set the low and high levels of interest [Li, Ui] for each factor i. 

4.  Identify driving frequencies. Use the ‘design’ program of the Appendix to identify a suitable set of driving 
frequencies ωi.  Let d denote the divisor for the frequency assignment. 

5. Assign driving frequencies to 
factors to create base design for 
signal run. 

Assign each factor a frequency from step 4.   

6. Reassign driving frequencies to 
control for system gain. 

Generate designs for two additional signal runs by permuting assignments so 
that each factor is observed at a low, a medium, and a high frequency across 
the three signal runs.  Binary factors should have low (but different) oscillation 
frequencies across the three signal runs. 

7. Determine run length. Default choice is N=(v+1)d where v (>= 10) is the desired degrees of freedom 
in the denominator of the resulting F test.  

8. Run experiments. For the noise runs, each factor is held at its nominal (middle) level. 
For the signal runs, oscillate each factor as eqn. (1) or (2) using the 
assignments of Steps 5 and 6. 

9. Truncate output. Remove any initial bias present by deleting the first complete cycle (d 
observations). 

10. Compute Fourier spectra. Use the ‘fspect’ program of the Appendix, specifying d non-zero frequencies 
(d/2 if d is even) and using a window size of M = 8d/3. 

11. Calculate signal-to-noise ratios. Use the ‘ratio’ program of the Appendix. 

12. Pool terms. Use the ‘analyze’ program of the Appendix to pool the results by term across 
the three signal-to-noise ratios.   

13. Interpret the results. Large values (spikes) in the table of pooled results correspond to terms with 
statistically significant effects, while spikes indistinguishable from background 
noise indicate no factor effects. 
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Table 2 
Frequency assignments for the mathematical example 
__________________________________________________ 
 
DESIGN 
     Assigned Frequency 
Factor    Run 1    Run 2    Run 3 
   1    1 / 27   10 / 27    4 / 27 
   2    4 / 27    1 / 27   10 / 27 
   3   10 / 27    4 / 27    1 / 27 
__________________________________________________ 
 
ANALYSIS 
 
       Indicator Frequency   Factors   
 Fractional   Decimal      Run1   Run2   Run3 
    1 / 27  (0.037037)    1:0    2:0    3:0 
    2 / 27  (0.074074)    1:1      2:2      3:3   
    3 / 27  (0.111111)    2:1      3:2      3:1   
    4 / 27  (0.148148)    2:0    3:0    1:0 
    5 / 27  (0.185185)    2:1      3:2      3:1   
    6 / 27  (0.222222)    3:2      3:1      2:1   
    7 / 27  (0.259259)    3:3      1:1      2:2   
    8 / 27  (0.296296)    2:2      3:3      1:1   
    9 / 27  (0.333333)    3:1      2:1      3:2   
  10 / 27  (0.370370)    3:0    1:0    2:0 
  11 / 27  (0.407407)    3:1      2:1      3:2   
  13 / 27  (0.481481)    3:2      3:1      2:1   
__________________________________________________ 
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Table 3 
Pooled output for the mathematical example  
 
  

S/N ratio 
# bins 
pooled 

 
Lack of Fit indicator: 1.22 

 
45 

    
Factor 1 Main effect: 209.74 3 
 Quadratic effect: 1.35 3 
    
Factor 2 Main effect: 1.11 3 
 Interaction with factor 1: 1.27 6 
 Quadratic effect: 8.76 3 
    
Factor 3 Main effect: 30.14 3 
 Interaction with factor 2: 31.87 6 
 Interaction with factor 3: 1.28 6 
 Quadratic effect: 1.06 3 



 

 

32 

 
Table 4  
Noise Factor Levels and Frequency Assignments for Kanban Example 
 

Factor 
Number Description 

Nominal 
Value Oscillation Range 

Freq. Assignment 
Numerator* 

    A1 A2 A3 
1 Repair Time 1 distribution. Normal Normal/Exponential 1 17 67 
2 Repair Time 2 distribution. Normal Normal/Exponential 4 29 89 
3 Repair Time 3 distribution. Normal Normal/Exponential 10 52 132 
4 Breakdown Arrival 1 distribution. Normal Normal/Exponential 17 67 1 
5 Breakdown Arrival 2 distribution. Normal Normal/Exponential 29 89 4 
6 Breakdown Arrival 3 distribution. Normal Normal/Exponential 52 132 10 
7 Processing Time 1 distribution Normal Normal/Exponential 67 1 17 
8 Processing Time 2 distribution Normal Normal/Exponential 89 4 29 
9 Processing Time 3 distribution Normal Normal/Exponential 132 10 52 

10 Raw Material Arrival variance      5 days2            1 – 9 days2 164 680 2086 
11 Raw Material Arrival mean    20 days          10 – 30 days 205 903 2117 
12 Repair Time 1 variance      2 hours2            1 – 3 hours2 259 1016 2195 
13 Repair Time 2 variance      2 hours2            1 – 3 hours2 303 1061 2613 
14 Repair Time 3 variance      2 hours2            1 – 3 hours2 350 1248 2840 
15 Repair Time 1 mean      8 hours            7 – 9 hours 405 1358 3060 
16 Repair Time 2 mean      8 hours            7 – 9 hours 505 1445 3314 
17 Repair Time 3 mean      8 hours            7 – 9 hours 529 1838 164 
18 Breakdown Arrival 1 variance  164 days2          64 – 264 days2 588 1878 205 
19 Breakdown Arrival 2 variance  164 days2          64 – 264 days2 680 2086 259 
20 Breakdown Arrival 3 variance  164 days2          64 – 264 days2 903 2117 303 
21 Breakdown Arrival 1 mean  120 days          80 – 160 days 1016 2195 350 
22 Breakdown Arrival 2 mean  120 days          80 – 160 days 1061 2613 405 
23 Breakdown Arrival 3 mean  120 days          80 – 160 days 1248 2840 505 
24 Demand Volume variance    34 units2            4 – 64 units2 1358 3060 529 
25 Demand Volume mean    92 units          87 – 97 units 1445 3314 588 
26 Setup Time 1 mean    12 min            2 – 22 min 1838 164 680 
27 Setup Time 2 mean    12 min            2 – 22 min 1878 205 903 
28 Setup Time 3 mean    12 min            2 – 22 min 2086 259 1016 
29 Processing Time 1 variance   0.1 min2       0.06 – 0.16 min2 2117 303 1061 
30 Processing Time 2 variance   0.1 min2       0.06 – 0.16 min2 2195 350 1248 
31 Processing Time 3 variance   0.1 min2       0.06 – 0 16 min2 2613 405 1358 
32 Processing Time 1 mean      3 min            2 – 4 min 2840 505 1445 
33 Processing Time 2 mean      3 min            2 – 4 min 3060 529 1838 
34 Processing Time 3 mean      3 min            2 – 4 min 3314 588 1878 

*Denominator is 7,656 
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Table 5 
Average Signal-to-Noise Ratios for Service Performance 

 
Term 
Identifier 

 
Description 

Average 
S/N ratios 

25 Demand Volume mean 289.65 
32 Processing Time 1 mean 187.21 
26 Setup Time 1 mean   74.26 
27 Setup Time 2 mean   56.91 
28 Setup Time 3 mean   48.40 
26 × 32 Setup Time 1 mean × Processing Time 1 mean   42.57 
33 Processing Time 2 mean   38.35 
322 Processing Time 1 mean2   24.41 
27 × 33 Setup Time 2 mean × Processing Time 2 mean   16.04 
25 × 26 Demand Volume mean × Setup Time 1 mean   15.38 
25 × 32 Demand Volume mean × Processing Time 1 mean   14.07 
7 × 25 Processing Time 1 distn. × Demand Volume mean   12.88 
25 × 27 Demand Volume mean × Setup Time 2 mean   11.70 
262 Setup Time 1 mean2   11.40 
34 Processing Time 3 mean   11.39 
27 × 32 Setup Time 2 mean × Processing Time 1 mean   11.25 
Other Indicator Frequencies 
(Standard Deviation) 

    1.68 
    (0.95) 

Background 
(Standard Deviation) 

    1.65 
    (1.84) 
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    Table 6:  Relative Efficiency of FDE (6 runs with 11 cycles per run) to a single replication of a CCD for various systems 

 

 Base designs   Systems 

Factors 
FDE 

denom (d) 
CCD  

runs (c) 
 

Indep AR1(.5) AR1(.6) AR1(.7) AR1(.8) AR1(.9) AR1(.95) AR1(.98) AR1(.995) 
pseudo  
kanban 

pseudo 
queue 

2 14 10  46.2 9.2 7.7 5.1 3.30 1.59 0.78 0.310 0.077 0.015 0.009 
4 46 26  58.4 11.7 9.7 6.5 4.17 2.01 0.99 0.392 0.098 0.019 0.012 
8 221 82  88.9 17.8 14.8 9.9 6.35 3.07 1.51 0.597 0.149 0.030 0.018 

12 610 156  129.0 25.8 21.5 14.3 9.22 4.45 2.19 0.866 0.216 0.043 0.026 
23 2,367 1,074  72.7 14.5 12.1 8.1 5.19 2.51 1.23 0.488 0.122 0.024 0.015 
34 7,656 2,120  119.2 23.8 19.9 13.2 8.51 4.11 2.02 0.800 0.199 0.040 0.024 
50 20,496 4,200  161.0 32.2 26.8 17.9 11.50 5.55 2.73 1.081 0.269 0.054 0.032 
63 38,618 8,322  153.1 30.6 25.5 17.0 10.94 5.28 2.60 1.028 0.256 0.051 0.031 
95 108,375 32,960  108.5 21.7 18.1 12.1 7.75 3.74 1.84 0.728 0.181 0.036 0.022 

120 243,557 33,012  206.9 41.4 34.5 23.0 14.78 7.14 3.51 1.389 0.346 0.069 0,041 
 batch sizes  1 5 6 9 14 29 59 149 598 3,000 5,000 


